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The instanton solution for the forced Burgers equation is found. This solution describes the exponential tail
of the probability distribution function of velocity differences in the region where shock waves are absent; that
is, for large positive velocity differences. The results agree with the one found recently by Polyakov, who used
the operator product conjecture. If this conjecture is true, then our WKB asymptotics of the Wyld functional
integral should be exact to all orders of perturbation expansion around the instanton solution. We also gener-
alized our solution for the arbitrary dimension of the Burgers~KPZ! equation. As a result we found the
asymptotics of the angular dependence of the velocity difference probability distribution function.
@S1063-651X~96!05110-0#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j

There are two complementary views of the turbulence
problem. One regards it as kinetics, in which case the time
dependence of the velocity probability distribution function
~PDF! must be studied. The Wyld functional integral de-
scribes the correlation functions of the velocity field in this
picture.

Another view is the Hopf~or Fokker-Planck! approach,
where the equal time PDF is studied. For the random force
distributed as white noise in time, the closed functional equa-
tions ~the Fokker-Planck equation! can be derived. In the
case of thermal noise the Boltzmann distribution can be de-
rived as an asymptotic solution of this equation. In fact, these
two methods are closely related, with the Fokker-Planck
equation being simply the Schro¨dinger equation of the field
theory given by the Wyld functional integral.

One of the authors@1# reduced the Hopf equations for the
full Navier-Stokes equation to the one dimensional func-
tional equation~loop equation!. WKB solutions of this equa-
tion were studied, leading to the area law for the velocity
circulation PDF.

At the same time, there is significant interest in solving
the randomly driven Burgers equation with a large scale
driving force ~see Ref.@9# and references therein!. It is be-
lieved that the randomly driven Burgers equation can pro-
vide us with the first exactly solvable model of a turbulence-
like problem.

In the recent paper by Polyakov@2#, which attempted to
solve this model exactly, a similar~to that of@1#! method of
solving the randomly driven Burgers equation was proposed.
It reduced the problem of computations of the equation’s
correlation functions to the solution of a certain partial dif-
ferential equation. This equation for the velocity difference
PDF can be explicitly solved. However, the derivation of the
Polyakov equation was based on the conjecture of the exist-
ence of the operator product expansion~OPE!.

On the other hand, the Wyld functional integral~see, for
example,@7#! provides us with a general field theoretic way
computating any correlation functions for any stochastic dif-
ferential equation. However, in almost all the attempts to use
the Wyld functional integral, only its direct perturbative ex-
pansion around the zero velocity field was used, as in@3#.

Numerous examples worked out in field theory in the last
two decades show that in many cases the zero value of fields
is not a good starting point for perturbative expansions. In-
stead, we must expand the functional integrals around the
solutions of classical equations of motion having finite ac-
tions, the so called instantons. Instantons provide us with
field configurations which minimize the action, thus domi-
nating the functional integral in a way similar to the saddle
point approximation in ordinary integrals. The name instan-
ton was chosen because such a solution usually exists for a
finite time interval to avoid having infinite action~i.e., for an
instant!. The instanton solution worked out for ordinary
quantum mechanics coincides with the WKB approximation
of the Schro¨dinger equation, while in field theory instantons
provide us with the only method of performing semiclassical
approximations. A review of the instanton methods in quan-
tum mechanics and quantum field theory can be found in@4#.

To our knowledge, the first attempt to use the classical
equations of motion coming out of the Wyld functional inte-
gral was made in@5#. Unfortunately, the classical solutions
obtained there were just perturbative expansions around the
zero velocity field, while the point of the instanton method is
to find classical solutions which account for the nonlinear
terms in an exact way. In fact, in all known examples of the
applications of instantons, such as quantum mechanical tun-
neling, Yang-Mills theory, nonlinear sigma model, and in the
model considered in this paper, the solution is nonperturba-
tive in coupling constant.

As was conjectured in@5# and later proved in@6#, the
instantons in the turbulence problem provide us with tails of
the probability distributions. The instanton in the turbulence
problem is not the same as the solution of the original
~Navier-Stokes or Burgers! equation in the usual sense. The
force is present, and it acts in a self-consistent way, as re-
quired by minimization of the action. This force is no longer
random, but is adjusted to provide the large fluctuation of
velocity field under consideration.

It was shown in@6# that the probability distribution func-
tion for the passive scalar advection in the Gaussian velocity
field is asymptotically described by an instanton, with spa-
tially homogeneous strain. Here we find the instanton in the
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Burgers equation, in the presence of finite viscosity. The
result which we obtain in the turbulent limit~vanishing vis-
cosity! coincides with that of Polyakov, which gives an in-
direct confirmation to his OPE conjecture. However, the in-
stanton method in its present form confirms only the
asymptotics of the probability distribution function of ob-
serving a velocity difference between two points when this
difference is large and positive. Some further work is re-
quired to check if the fluctuations around the instanton solu-
tion will keep the probability distribution function from@2#
intact.

An analog of the instanton solution found here for the
randomly driven Navier-Stokes equation is given in@6#.

However, its physical meaning there remains unclear.
We start with the randomly driven Burgers equation

ut1uux2nuxx5 f ~x,t !, ~1!

where the forcef (x,t) is a Gaussian random field with a pair
correlation function

^ f ~x,t ! f ~y,t8!&5d~ t2t8!k~x2y!. ~2!

The Wyld functional integral has the following form~see,
for example,@7#!:

E Df expS 2 1
2 E dx dy dt f~x,t !D~x2y! f ~y,t ! D
5E Df Dud@ut1uux2nuxx2 f #expS 2 1

2 E dx dy dt f~x,t !D~x2y! f ~y,t ! D
5E Df DuDm expS ıE dx dtm~ut1uux2nuxx2 f !2 1

2 E dx dy dt f~x,t !D~x2y! f ~y,t ! D
5E DuDm expS ıE dx dtm~ut1uux2nuxx!2 1

2 E dx dy dtm~x,t !k~x2y!m~y,t ! D . ~3!

Here we started with the obvious functional integral for the
force, whereD is the function inverse tok. To change the
variable of integration fromf to u, we inserted into the func-
tional integral the identity

N5E Dud@ut1uux2nuxx2 f #, ~4!

whereN is just a number. Dropping that number as an un-
important constant, we removed thed function at the ex-
pense of introducing a ‘‘conjugated’’ variablem, and evalu-
ated the integral overf to arrive at the final expression in Eq.
~3!.

It is not so obvious that the integral in Eq.~4! is equal to
a pure number because of the determinant det(d f /du) aris-
ing in its computation. It is possible, however, to prove~4!
using the causality argument~see@7#!.

Thus the initial problem of computing the correlation
functions of Burgers equation is reduced to the field theory
with the action

S52ıE m~ut1uux2nuxx!1 1
2 E dx dy dtm~x,t !

3k~x2y!m~y,t !. ~5!

Here we are going to study the correlation function

^exp$l0„u~r0/2!2u~2r0/2!…%&

5E DuDm exp$l0„u~r0/2!2u~2r0/2!…2S%, ~6!

whose Laplace transform gives us the two point probability
distribution ~see@2#!. We will often refer to the expression
we have in the exponential as the action

Sl0
5S2l0„u~r0/2!2u~2r0/2!…. ~7!

There are no general methods to compute the functional in-
tegrals like Eq.~6! exactly. The most straightforward ap-
proach would be to expand the exponential in functional in-
tegral in powers of the nonlinear termmuux . By doing so
we will just reproduce the well known Wyld’s diagram tech-
nique~see@8#!. The attempts to use this technique to describe
turbulence always failed, because we were interested in the
limit n→0 when a nonlinear term dominates the functional
integral. The absence of a large parameter makes the task of
computing this functional integral by using perturbation
theory hopeless.

Nevertheless, if we are interested in computing the large
l0 behavior of the correlation function in Eq.~6!, we can use
l0 itself as a large parameter. Then the integral will be domi-
nated by its saddle point, or by the solutions of the equations
of motion for the action~7!. All we have to do is to find
those solutions and compute the value of the actionSinst on
those solutions. The answer will be given by

^exp$l0„u~r0/2!2u~2r0/2!…%&

5exp$2Sinst~l0!1Sinst~0!%. ~8!

If we want, we can then further expand the integral in powers
of 1/l0 by using the perturbation theory around those solu-

54 4909INSTANTONS IN THE BURGERS EQUATION



tions. We will call this method the WKB approximation and
the solutions instantons, using the names borrowed from
quantum field theory.

To that effect, let us write down the equations of motion
corresponding to action~7!. They are

ut1uux2nuxx52ıE dyk~x2y!m~y!, ~9!

m t1umx1nmxx52ıl0H dS x2
r0
2 D2dS x1

r0
2 D J d~ t !.

~10!

We note that Eqs.~9! and ~10! follow from the Burgers
equation, yet they are not exactly the Burgers equation. We
suspect that these equations~and their generalization for the
Navier-Stokes case! are more fundamental than the Burgers
and Navier-Stokes equations themselves, at least as far as the
turbulence problem is concerned. A thorough study of their
solutions may perhaps become another important problem of
mathematical physics.

To solve these equations, let us first notice that the only
role the right-hand side of Eq.~10! plays is giving the field
m a finite discontinuity att50. It is also easy to see that
m(t)50 for t.0. This is becausem feels a negative viscos-
ity, so any solution which is nonzero att.0 will become
singular. Thus the fieldm can be evaluated att520 to be

m~ t520!5ıl0H dS x2
r0
2 D2dS x1

r0
2 D J ~11!

while it is zero at all later moments of time. It is therefore
convenient to speak of the fieldm propagating backwards in
time starting from its initial value given by Eq.~11!. Alter-
natively, one can argue that the integrals in Eq.~3! are de-
fined only fort,0. Those arguments use a striking similarity
~actually, an exact correspondence! between Eq.~3! and a
Feynman path integral for a quantum mechanical system
with the coordinatesu and momentam to define Eq.~6! as a
wave function in the momentum representation. Then condi-
tions ~11! become obvious.

If we try to propagate Eq.~11! back in time, we discover
that we have to deal with two phenomena governed by the
second and third terms of Eq.~10!. One of them is just a
motion of the initial conditions as dictated by the velocity
u. The other is the ‘‘smearing’’ of the initiald function
distributions in Eq.~11! due to the viscosity.

However, it can be shown by a direct computation that the
smearing does not change the value of the action on the
instanton as long as the viscosity is not very large. We will
construct a solution at the end of this paper which takes into
account the viscosity. For now we will just drop the viscosity
term to arrive at a simplified equation

m t1umxx50. ~12!

Since all this equation can do is moving thed-function-like
singularities around~and changing their heights by com-
pressing them!, it is clear that the solution of Eq.~12! with
the boundary conditions given by Eq.~11! is just

m~ t !5ıl~ t !H dS x2
r~ t !

2 D2dS x1
r~ t !

2 D J , ~13!

with the boundary conditions

l~0!5l0 , r~0!5r0 . ~14!

Now let us leave Eq.~10! for a while and study Eq.~9!. A
natural thing to do is to substitute Eq.~13! into the right-
hand side of Eq.~9!. We obtain

ut1uux2nuxx5lH kS x2
r

2D2kS x1
r

2D J . ~15!

To proceed further, we need to knowk. Let us assume, fol-
lowing @2#, that k(x) is a slowly varying even function of
x which behaves as

k~x!'k~0!2
k0

2
x2, uxu!S k~0!

k0
D 1/2[L, ~16!

and quickly turns into zero whenuxu@L. The intervalL
characterizes the range of the random force and we will work
only there; that is, we suppose thatr also lies within this
interval. It is clear then that the contribution to action~7!
comes only from the intervalL @compare with Eq.~13!#. So
we do not have to know the velocity beyond that interval.
There we use Eq.~16! to obtain

ut1uux2nuxx5lrk0x. ~17!

Notice thatk(0) dropped out.
Equation~17! is a Burgers equation with a linear force. It

is easy to solve such an equation. We have to look for the
solution in terms of a linear function

u~x,t !5s~ t !x, ~18!

which leads to

ds

dt
1s25k0lr. ~19!

Notice that the viscosity term did not contribute. That does
not mean that the viscosity is not important at all. For
x@L the force in Eq.~15! becomes zero, and the viscosity
there could be important. However, in the regionx}r, which
is the one we study, the viscosity term can be dropped.

Now we can use Eqs.~18! and ~13! to solve Eq.~12!. A
direct substitution leads to

dl

dt
5ls,

~20!

dr

dt
5rs.

These can be solved in terms of the function
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R~ t !5expS E
0

t

dt8s~ t8! D
to give

l5l0R,

r5r0R, ~21!

while R itself satisfies, by virtue of Eq.~19!, the equation

d2R

dt2
5k0r0l0R

3. ~22!

The last equation has to be solved with the boundary condi-
tion R(2`)50; otherwise action~7! will not be finite. The
solution is given by

R5
1

12Ak0r0l0

2
t

. ~23!

So we have found the instanton solution for Eqs.~9! and
~10!. Notice that it is theonly solution of the equations of
motion with given boundary conditions, so we do not have to
sum over different instantons. We would like to comment
that due to the Galilean invariance of Eqs.~9! and ~10!, we
can always perform a Galilean transformation on the instan-
ton solution to obtain another instanton solution. However,
those other solutions will have a nonzero velocity in the
infinite past, that is, they describe different ground states of
the field theory we consider and we have to discard them
~remember, the Galilean symmetry is spontaneously broken;
see@2#!.

Now it is a matter of a simple computation to find the
action on the instanton. We collect everything together and
substitute Eqs.~23!, ~21!, ~13!, and ~18! back to Eq.~7! to
obtain

Sinst52
A2k0

3
~l0r0!

3/2, ~24!

while the correlation function we have been studying is

^exp$l0„u~r0/2!2u~2r0/2!…%&5expSA2k0

3
~l0r0!

3/2D .
~25!

This is the same answer as the one obtained in@2#. We want
to emphasize, however, that we obtained it without any con-
jectures, and only as an asymptotics forul0u@1. That allows
us to find the asymptotics of the probability distribution of
observing the velocity differenceu at a distancer0 as

P~u,r0!5K dH u2FuS r0
2 D 2uS 2

r0
2 D G J L

'expH 2
2

3k0

u3

r0
3J , ~26!

with u→1`. Unfortunately the asymptotics~25! does not
allow us to find the left tail of the probability distribution as
it is related to smalll0.

We are not going to discuss the physical implications of
Eq. ~25!, referring instead to papers@2# and @9#.

Now we return to the question of why we can drop the
viscosity in Eq.~10!. That is, we just construct the solution
of Eq. ~10! with the viscosity. To do that, it is convenient to
Fourier transform it~taking into account that the velocityu is
a linear function ofx),

]m~p!

]t
2s

]

]p
„pm~p!…2np2m50. ~27!

Then the solution of Eq.~27! can be found as a direct
generalization of Eq.~13!:

m~p!}l~ t !sinS pr~ t !

2 Dexp„2b~ t !p2…. ~28!

Here we had to introduce the variableb(t) which measures
the speed of smearing of the solution with the evident initial
conditionb(0)50. Substituting Eq.~28! into Eq. ~27!, we
reproduce Eq.~21! for r andl with the additional equation
for b,

b t22sb1n50, ~29!

with the solution

b~ t !5
n

3v

~12vt !321

~12vt !2
, ~30!

wherev5A(k0r0l0)/2.
The smearing, however, has no influence whatsoever on

the velocity. To see that, we substitute Eq.~28! into Eq. ~9!,
and arrive back at Eq.~17!. In other words, the variables
still satisfies the same equation~19!. A simple argument
given below shows that the value of the instanton action
depends only on the final value of the velocity of the instan-
ton solution which, as we just showed, does not depend on
the viscosity. That is, while Eq.~28! is an exact answer for
m(t), we can still use Eq.~13! to evaluate the action on the
instanton.

We must remember, though, that we should not allowm
to spread beyond theL interval, or more preciselyL.Ab.
b can become arbitrarily large for large negative times, but
the characteristic time interval which contributed to the com-
putation of the instanton action is

t inst5
1

v
. ~31!
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So all we have to do is to make sure thatb(t inst),L2 or

L2.
n

v
. ~32!

This is the condition which viscosity must satisfy for Eq.
~25! to be correct and independent of viscosity.

So far we cannot claim that Eq.~25! is an exact answer. It
is just a leading asymptotic iful0u is a large number. It might
be important to estimate the next order contribution to Eq.
~25!, especially in view of the claim made in@2# that Eq.~25!
is actually exact.

To do that it is convenient to introduce the quantity

]

]l0
ln^exp$l0„u~r0/2!2u~2r0/2!…%&

5

E DuDm@u~r0/2!2u~2r0/2!#exp~2Sl0
!

E DuDm exp~2Sl0
!

.

~33!

It is easy to expand this quantity around the instanton solu-
tion. Writing u5uinst1ũ, m5m inst1m̃ we arrive for~33! at

uinstS r0
2 D2uinstS 2

r0
2 D1

E DũDm̃@ ũ~r0/2!2ũ~2r0/2!#exp$2Sl0
~uinst1ũ,m inst1m̃ !%

E DũD m̃ exp$2Sl0
~uinst1ũ,m inst1m̃ !%

. ~34!

The first term of the expression corresponds to the instan-
ton contribution to the action. We see that it depends only on
the value of the instanton solution att50, justifying our
argument that the viscosity does not contribute to the answer.
We can easily compute this term by substituting the known
instanton solution to obtain

S k0l0

2 D 1/2r03/2, ~35!

which is of course compatible with Eq.~25!.
To find higher order corrections we have to expand the

second term in Eq.~34!. It is not difficult to see that if we
expandSl0

(uinst1ũ,m inst1m̃) in powers ofũ and m̃ up to

second order, the contribution from that will be zero, asS
will be an even function ofũ and m̃. However, due to the
presence of the third order terms in the action, it is not clear
if the higher order terms are also zero. We intend to investi-
gate this question in another publication.

The analysis of this paper can easily be extended for the
case of more than one dimension. The analog of Eqs.~9! and
~10! will be

]ui
]t

1S uj ]

]xj
Dui2nDu52ıE dyk i j ~x2y!m j~y!,

~36!

]m i

]t
1

]

]xj
~ujm i !2m j

]uj
]xi

1nDm

52ıl0i H dS x2
r0
2 D2dS x1

r0
2 D J d~ t !. ~37!

The solution of these equations is a direct generalization
of Eq. ~13!, or

m i~ t !5ıl i~ t !H dS x2
r~ t !

2 D2dS x1
r~ t !

2 D J , ~38!

with

l i~0!5l0i , r i~0!5r0i . ~39!

The further progress depends on the tensorial structure of
k i j , which is just a correlation function

^ f i~x,t ! f j~y,t8!&5k i j ~x2y!d~ t2t8!. ~40!

A natural thing to assume would be that the force is a gra-
dient of something; that is,f i5] iF, in which case

k i j ~x!'k i j ~0!2
k0

6
~x2d i j12xixj !. ~41!

A direct generalization of the velocity ansatz is

ui5s i j xj , ~42!

and Eqs.~19! and ~20! turn into

dl i

dt
5l js j i ,

dr i
dt

5s i jr j , ~43!

ds i j

dt
1s iksk j5

k0

3
~l ir j1r il j1d i jlkrk!.

s can actually be eliminated from those equations to give
us an analog of Eq.~22!,
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d2l i

dt2
5

k0

3
~r il

212l ilkrk!,

~44!

d2r i
dt2

5
k0

3
~l ir

212r ilkrk!.

While a general solution of those equations is rather dif-
ficult to find, it is possible to find the action on the solution
by analyzing the corresponding Hamilton-Jacobi equation.
To do that, we note that Eqs.~44! are Hamiltonian, with the
Hamilton function

H5
dl i

dt

dr i
dt

2
k0

6
„r2l212~lkrk!

2
…. ~45!

The ~time independent! instanton actionS clearly satisfies
the equation@10#

]S

]l i

]S

]r i
2

k0

6
„r2l212~lkrk!

2
…50. ~46!

By rescaling the time and the variablesr and l in Eq.
~44! we can show that actionS has the initial condition de-
pendence

S52S k0

6 D 1/2~r0l0!
3/2f ~cosw!, ~47!

wherew is the angle between the vectors of initial conditions
l0i andr0i . This ansatz coincides with the one dimensional
answer ~24! up to a nontrivial function of the angle
f (cosw), which we would like to determine. Plugging the
ansatz into the Hamilton-Jacobi equation, we obtain the
equation forf (cosw),

9
4z f

213 f f 8~12z2!1 f 82~2z1z3!5112z2, ~48!

wherez5cos(w). This first order differential equation has to
be solved with the boundary condition

f ~1!5
2

A3
, ~49!

which follows directly from Eq.~48! but also can be com-
puted by solving the equation of motion forw50. We can
find the functionf as a series in powers of 12z. It turns out
there are two solutions

f ~z!5
2

A3
2

A31A11
4

~12z!1
5A33261

32~3A322A11!
~12z!2

1•••, ~50!

f ~z!5
2

A3
1

A112A3
4

~12z!2
5A33161

32~3A312A11!
~12z!2

1•••. ~51!

Equation ~48! does not tell us which of these two to
choose. We have to match Eqs.~50! and~51! with the solu-
tion of Eq. ~44!. Those equations cannot be solved in gen-
eral, but there is a way to find their solution if the anglew is
close to zero, which should be enough to determinef 8(1)
and therefore to choose the right action.

To do that, we note that the motion represented by Eq.
~44! is essentially two dimensional, with all the motion con-
fined to thel0 ,r0 plane. Then we representl as two vectors
(l1 ,l2), while r5(l1 ,2l2). Equations~44! turn into ~we
choose the units wherek053)

d2l1

dt2
53l1

32l1l2
2 ,

~52!

d2l2

dt2
523l2

31l2l1
2 .

We choose the boundary conditionsl051 andr051. If
w50, thenl250, while l1 satisfies the equation

d2l1

dt2
53l1

3 ; ~53!

hence

l15
1

12vt
, v5A3

2 . ~54!

Now if w is a small number, thenl2!l1, and it satisfies the
approximate equation

d2l2

dt2
5

l2

~12vt !2
, ~55!

with the solution

l25
C

~12vt !a , a5
236A33

6
. ~56!

In particular, fort50,

d lnl2

dt
5

2A36A11
2A2

. ~57!

That last quantity can also be evaluated if we know action
S. For t50 we obtain

dr i
dt

5
]

]S
l i5

3l i

2A2
f ~z!1

f 8~z!

A2
~r i2zl i !, ~58!

which translates to the language ofl2 (l2!l1 andz'1) as

d lnl2

dt
5A2 f 8~1!2A3

2 . ~59!
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Comparing with Eq.~57!, we obtain

f 8~1!5
A36A11

4
. ~60!

Now we need to choose the plus sign in all the above
formulas as we wanta to be positive. Otherwise our action
will correspond to the solution growing att→2`. That
makes us choose thef (z) from Eq. ~50!, while Eq. ~51! has
to be discarded.

We would also like to note that, according to Eq.~48!,
f (21)5ıf (1), which can be checked directly by solving the
equations of motion atw5p. Moreover, it can be seen from
Eq. ~48! that ıf (2z) is its solution if f (z) is a solution. So
we believe there should be some kind of a crossover where
the real solution becomes purely imaginary. The fact that the
correlation function of a real quantity becomes imaginary
should not disturb us. This means that the correlation func-
tion we are computing may not exist for a certain value of
l i , and can only be understood in the sense of analytic con-
tinuation. Apparently, the logarithm of the probability distri-
bution function which is obtained by a Legendre transform
of the action we found must remain real. One could perform
this transform term by term in our expansion.

Summarizing everything, the answer for the
D-dimensional case is given by

K expH l iFui S r

2D 2ui S 2
r

2D G J L
5expHAk0

6
~rl!3/2f ~cosw!J , ~61!

while a Legendre transform of the action will give us the
probability distribution function in the form

K dH ui2F uiS r

2D 2uiS 2
r

2D G J L
'expH 2

2

3k0

u3

r3
S 11

9~A3321!

~92A33!2
c21•••D J ,

~62!

where c is the angle betweenui and r i , c!1, and
u/r→1`.

In conclusion, we would like to say that we have showed
by a simple computation that WKB calculations are very
useful for understanding the behavior of the randomly driven
Burgers equation, and we hope they will be found useful in
other problems of turbulence as well. The instanton we
found has a spatial homogeneous strain~the velocity was a
linear function in the inertial interval! and we suspect it to be
a general feature of the instantons in the turbulence problem.
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